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Abstract The only true living endothermic vertebrates are birds and mammals, which produce

and regulate their internal temperature quite independently from their surroundings. For mammal

ancestors, anatomical clues suggest that endothermy originated during the Permian or Triassic.

Here we investigate the origin of mammalian thermoregulation by analysing apatite stable oxygen

isotope compositions (d18Op) of some of their Permo-Triassic therapsid relatives. Comparing of the

d18Op values of therapsid bone and tooth apatites to those of co-existing non-therapsid tetrapods,

demonstrates different body temperatures and thermoregulatory strategies. It is proposed that

cynodonts and dicynodonts independently acquired constant elevated thermometabolism,

respectively within the Eucynodontia and Lystrosauridae + Kannemeyeriiformes clades. We

conclude that mammalian endothermy originated in the Epicynodontia during the middle-late

Permian. Major global climatic and environmental fluctuations were the most likely selective

pressures on the success of such elevated thermometabolism.

DOI: 10.7554/eLife.28589.001

Introduction
One key adaptation enabling tetrapods to cope with fluctuating climatic conditions was the acquisi-

tion of endothermy (Paaijmans et al., 2013). This character is defined here as the ability to actively

produce body heat through metabolic activity (Cannon and Nedergaard, 2004). Its development

and anchoring in populations constitutes a major step in vertebrate evolution because it modified

the energy relationships between organisms and their environments. By actively raising and main-

taining body temperature within a narrow range that allows optimal physiological and biochemical
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functioning, endothermic vertebrates are able to colonise environments with extreme thermal condi-

tions, for example freezing at high latitudes and altitudes (Day et al., 2015). Endothermy is com-

monly associated with homeothermy, being the capacity to regulate the body heat through

metabolic activity as well. This combination corresponds to one end of a gradient of thermoregula-

tory strategies observed in living animals. The other end of the spectrum is ectothermy combined

with poı̈kilothermy which animals use as a thermoregulatory strategy to increase their body tempera-

ture toward optimal levels by using external heat sources. Their body temperature therefore traces

that of their surroundings and is the most commonly occurring energy saving strategy. Amongst

modern vertebrates, various thermoregulatory strategies have been adopted between these two

end-members, such as regional endothermy (Bernal et al., 2001; Katz, 2002) or inertial homeo-

thermy (McNab and Auffenberg, 1976), and only birds and mammals fall within the endothermy

end of the spectrum. It has been proposed that bird thermoregulation originated within non-avian

dinosaurs (Seebacher, 2003; Amiot et al., 2006; Grady et al., 2014), or even earlier within basal

archosauriforms (Farmer and Carrier, 2000; de Ricqlès et al., 2003; Seymour et al., 2004; Sum-

mers, 2005; Gower et al., 2014; Legendre et al., 2016). Various approaches have been tried by

eLife digest School textbooks often refer to “cold-blooded” and “warm-blooded” animals, but

these terms are misleading. Rather than being cold, animals like reptiles have body temperatures

that are mostly determined by their external environment and can actually achieve high body

temperatures, for example, by basking in the sun. By contrast, “warm-blooded” mammals produce

their own heat and typically maintain a body temperature that is warmer than their environment. As

such, so-called warm-blooded animals are more accurately referred to as “endotherms” and cold-

blooded animals as “ectotherms”.

Endothermic animals share several characteristics, including insulating layers – like fur or feathers

– that keep the body warm, and a secondary palate that separates the mouth and nose for

continuous breathing, even while eating. Many of these traits are seen in fossils belonging to a

group of animals called the therapsids. Also known as the “mammal-like reptiles”, these animals are

descended from ectothermic reptiles but are the ancestors of the endothermic mammals. They

dominated the land between 270 and 220 million years ago, during periods of time called the

Permian and the Triassic. They also survived two major mass extinction events, including the most

devastating mass extinction in all of Earth’s history. However, when the ancestors of mammals

became truly endothermic remains an open question. Previous studies that have tried to determine

this by focusing on the physical characteristics of therapsids have not yet given a consistent date.

Rey et al. took a new approach to answer when endothermy first evolved in the mammal-like

reptiles, and instead looked at the chemical makeup of minerals in over 100 fossils. Oxygen can exist

in different forms called stable isotopes: oxygen-16 and the rarer and heavier oxygen-18. The ratio

of these two isotopes in a fossil will depend on, among other things, where the animal lived and,

importantly, its body temperature. Therefore, Rey et al. compared oxygen-containing minerals in the

bones and teeth of therapsids to those of other animals that lived alongside them to look for

signatures that indicated differences in body temperature and how it was regulated.

It appears that two different branches of the therapsid’s family tree independently became

endothermic. One branch includes the mammals and their direct ancestors, while the second is more

distantly related to mammals. Both became endothermic towards the end of the Permian Period,

between about 259 and 252 million years ago. Based on these findings, Rey et al. suggest that

endothermy allowed these animals to better cope with fluctuating climates, which helped them to

be among the few species that survived the mass extinction event at the end of the Permian.

Going forward, these new findings can help scientists to understand which physical characteristics

were necessary for endothermy to first develop and which helped to optimize it afterwards.

Furthermore, they also suggest that endothermic animals are more able to survive fluctuations in

climate, which could guide efforts to protect modern-day endangered species that are most at risk

from the ongoing effects of climate change.

DOI: 10.7554/eLife.28589.002
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many researchers to assess the origin of mammalian endothermy (McNab, 1978; Bennett and

Ruben, 1986; Farmer, 2000; Hillenius, 1992, 1994; Kemp, 2006a; Khaliq et al., 2014;

Owerkowicz et al., 2015; Benoit et al., 2016b; Crompton et al., 2017). Some consider the appear-

ance of endothermy to have either occurred during the transition from basal synapsid ‘pelycosaurs’

to therapsids, and to be either due to a shift in foraging ecology (Hopson, 2012) or due to a

response to the availability of a seasonally arid, savanna-like biome by the end of the Early Permian

(Kemp, 2006b).

How and why endothermy evolved in mammals remains a contentious issue, mostly because of

the very low fossilization potential of anatomical and behavioural features associated with thermo-

regulation. Amongst the latter features, the presence of hair as an insulating integument is unequiv-

ocally associated with endothermy in all extant mammals. The oldest synapsid fossils preserved with

fur imprints are Castorocauda (Ji et al., 2006) and Megaconus (Zhou et al., 2013). These early rela-

tives of mammals were recovered from the Middle-Late Jurassic of China, implying that hair and fur

appeared before ~165 Ma. The occurrence of retracted, fully ossified and non-ramified infraorbital

canals (a structure associated with the presence of maxillary vibrissae) within non-mammaliaform Pro-

zostrodontia, implies an older age of approximately 240 to 246 Ma for the occurrence of fur and hair

(Benoit et al., 2016b).

Another anatomical character interpreted as associated with endothermy is the bony secondary

palate. This is a feature associated with efficient respiratory capabilities considered to be linked to

the high energy required for elevated metabolic rates. In some Triassic non-mammaliamorph therap-

sids, bauriid therocephalians and cynodonts, a bony secondary palate is fully developed

(Abdala et al., 2014). It is noteworthy that a complete bony secondary palate is also present in dicy-

nodonts, however it is primarily formed by the premaxilla (King, 1988) and not the maxilla as docu-

mented in therocephalians, cynodonts and extant mammals. Although a secondary osseous palate is

ubiquitous in mammals, it also occurs in a few ectotherms (crocodiles, scincid lizards), thus question-

ing its direct link to endothermy (Bennett and Ruben, 1986).

Almost all extant endotherms possess nasal turbinate bones covered with mucosa that reduce

heat loss and moisten air during respiration (Owerkowicz et al., 2015). This feature, absent in

extant ectotherms (Witmer, 1995), may have been present in therocephalian, cynodont and dicyno-

dont therapsids, as postulated from bony ridges in the nasal cavities interpreted as supports for the

turbinate complex (Hillenius, 1992, 1994; Crompton et al., 2017).

A peculiar histological structure of fast-growing bone associated with highly vascularised woven-

fibred matrix and primary osteons known as fibrolamellar bone (FLB), is another feature often used

as evidence of a high metabolic activity (Montes et al., 2010; Legendre et al., 2016). Accordingly,

several bone palaeohistological studies have addressed the quest for the presence of FLB in therap-

sids (de Ricqlès, 1972, 1979; Botha, 2003; Botha and Chinsamy, 2001, 2004; Ray et al., 2004;

Olivier et al., 2017). Ray et al. (2004) and Olivier et al. (2017) analysed several therapsid groups

(anomodont, gorgonopsian, therocephalian, cynodont) and found FLB in some genera (Aelurogna-

thus, Pristerognathus, Tritylodon, Oudenodon, Lystrosaurus, Moghreberia), suggesting sustained

fast growth, and thus elevated metabolic activity. The presence of FLB has also been demonstrated

in some earlier non-therapsid synapsids such as Sphenacodon, Dimetrodon or even Ophiacodon

(Huttenlocker et al., 2010; Shelton et al., 2012; Shelton and Sander, 2017). However, FLB also

occurs in a few ectotherms such as in some turtles and crocodilians, and is absent in small mammals

and passerine birds (Bouvier, 1977), showing that FLB is mostly correlated with high growth rates,

which does not always correlate to high metabolic rates. Therefore, these characters alone cannot

be considered as definitive evidence of endothermy, leaving the question of the timing and selection

pressure for the origin of mammal endothermy still heavily debated.

Because the oxygen isotope fractionation between bone or tooth phosphate and body fluids is

temperature dependent, and phosphate has a strong resistance to diagenetic alteration, oxygen iso-

tope compositions of therapsid apatite phosphate (d18Op) has been used in this pilot study to inves-

tigate the origin of mammalian endothermy. Indeed the d18Op value of vertebrate apatite (bone,

tooth) reflects both the oxygen isotope composition of the animal body water (d18Obw) and its body

temperature (Tb). Body water derives mainly from drinking meteoric water or plant water

(D’Angela and Longinelli, 1990; Kohn, 1996a), and the d18O value of this water in turn depends on

climatic parameters such as air temperature, hygrometry, and amount of precipitation (Dans-

gaard, 1964; von Grafenstein et al., 1996; Fricke and O’Neil, 1999).
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Variations in the d18O values of ectotherm apatite, along with increasing latitude, are expected to

reflect decreasing air temperatures as their body temperatures follow those of the environment. In

contrast endotherms, which have a constant body temperature, should not be affected by environ-

mental temperatures changes. Moreover, physiological adaptation to specific habitat use (aquatic,

semi-aquatic or terrestrial) affects the d18Obw value by controlling the magnitude of body input and

output oxygen fluxes, some of them being associated with oxygen isotopic fractionations

(Amiot et al., 2010). Therefore, co-existing endotherms and ectotherms should have distinct apatite

d18Op values reflecting their body temperature and ecological differences. By comparing apatite

d18Op values of therapsids with those of co-existing ectotherms of known ecologies at various palae-

olatitudes, it should be possible to infer therapsid thermophysiology, a methodology that has previ-

ously been applied to non-avian dinosaurs (Fricke and Rogers, 2000; Amiot et al., 2006).

Following the protocol of previous research undertaken to establish the Permo-Triassic climatic

conditions that prevailed during which South African tetrapods, including therapsids, radiated

(Rey et al., 2016), this study aims to investigate thermophysiological strategies developed by vari-

ous Permo-Triassic therapsid groups using the stable oxygen isotope compositions of their phos-

phatic remains. Our results add new data to the discussion of the origin of mammalian endothermy

and its link to global climatic change.

Results

Permian therapsids
The 13 sampled South African Permian therapsids come from three different assemblage zones (AZ)

of the Beaufort Group: the lower Tapinocephalus AZ, the Tropidostoma AZ and the lower Daptoce-

phalus AZ (Viglietti et al., 2016).

Oxygen isotope compositions of three therapsid genera (Dicynodon, Diictodon and Oudenodon)

from the youngest assemblage zone (lower Daptocephalus AZ) and seven therapsid genera (Aeluro-

saurus, Diictodon, Ictidosuchoides, Oudenodon, Rhachiocephalus, Tropidostoma and a basal cyno-

dont) from the Tropidostoma AZ were respectively compared with one co-occuring Rhinesuchus and

one co-occuring rhinesuchid. Differences between all the Permian therapsids and ectothermic tem-

nospondyl range from +1.1 ± 0.6‰ to +8.0 ± 0.9‰ (Figure 1A), encompassing the expected range

for which therapsids are considered ectothermic.

In addition, d18Op values of the therapsids Dicynodon, Diictodon and Oudenodon are compared

to those of the supposedly semi-aquatic parareptile Pareiasaurus (Ivakhnenko, 2001; Kriloff et al.,

2008) (see Appendix 1), with an observed range of +4.3 ± 0.4‰ to +6.8 ± 0.5‰ (Figure 1A) which is

similar to that measured between therapsids and amphibians. This also supports the ectothermic sta-

tus of Dicynodon, Diictodon and Oudenodon.

Anteosaurus, Criocephalosaurus, Struthiocephalus, Glanosuchus and a titanosuchid from the

lower Tapinocephalus AZ have also been compared to two co-occuring basal pareiasaurs which are

attributed to either Embrithosaurus, Nochelosaurus or Bradysaurus (Lee, 1997) and are considered

to have been terrestrial animals (Canoville et al., 2014). From Figure 1B, the d18Op differences

range from �1.4 ± 0.6‰ to 0.7 ± 1.0‰, also supporting the ectothermic status of these therapsids.

From the Middle Permian of China, one anteosaurid Sinophoneus yumenensis from the low palae-

olatitude locality of Dashankou has a d18Op value 4.4 ± 0.3‰ lower than the co-existing bolosaurid

parareptile Belebey chengi, which is considered to have been a terrestrial ectotherm (Berman et al.,

2000; Müller et al., 2008). This difference between only two values would suggest that Sinophoneus

was endothermic, but it is also very close to the expected ranges for ectothermic therapsids

(Figure 1B). Considering Sinophoneus as semi-aquatic, as has been suggested for some anteosaur-

ids (Boonstra, 1955, Boonstra, 1962), the d18Op difference would imply an ectothermic thermo-

physiology for this therapsid. This hypothesis needs to be tested with a larger number of samples,

which are not yet available.

Early to Middle Triassic therapsids
From the Cynognathus AZ (subzone B) of South Africa, differences between the therapsids Kanne-

meyeria, Cynognathus and Diademodon and the temnospondyl amphibians Xenotosuchus and

Microposaurus range from �1.5 ± 1.1‰ to +0.9 ± 1.5‰ (Figure 2A), which fit within the range
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Figure 1. d18Op differences between Permian therapsids and other tetrapods. Differences in d18Op values between therapsids and stereospondyls

(white symbols) and between therapsids and parareptiles (black symbols) from the same localities are plotted against their corresponding

palaeolatitude. A theoretical framework based on modern temperature gradient (0.6 ± 0.1˚C/˚Lat; see Appendix 1) and phosphate-water-temperature

Figure 1 continued on next page
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predicting endothermic therapsids. Interestingly, these therapsids have values ranging from

0.0 ± 1.6‰ to +1.8 ± 1.6‰ higher than the coexisting terrestrial archosauriform Erythrosuchus

(Botha-Brink and Smith, 2011), a range suggesting that they shared a similar thermophysiology

(Figure 2B). Therefore d18Op values imply that, as in the case of the therapsids, Erythrosuchus was

also endothermic which is consistent with the elevated growth rates implied by its palaeohistology

(de Ricqlès et al., 2008; Botha-Brink and Angielczyk, 2010).

Also from South Africa, five Lystrosaurus specimens from the lower Lystrosaurus AZ have d18Op

values similar to those of the co-existing semi-aquatic stereospondyl Lydekkerina (Schoch, 2008;

Canoville and Chinsamy, 2015). In addition, an indeterminate lystrosaurid from the Induan Jiu-

caiyuan Formation of the Xinjiang Province has a d18Op value similar (with a difference of

�0.1 ± 0.6‰; Figure 2B) to that of the proterosuchid ‘Chasmatosaurus’ yuani, a basal archosauri-

form considered terrestrial and possessing an intermediate thermometabolsim based on a palaeo-

histological study (Botha-Brink and Smith, 2011). The combined results from South Africa and

China suggest that the analysed lystrosaurids were terrestrial endotherms (Figure 2; see Appendix

1).

From the Ermaying Formation of the Shanxi Province (China), the therapsids Shansiodon wangi

and Parakannemeyeria youngi have respectively d18Op values of 2.0 ± 0.7‰ and 1.7 ± 0.7‰. These

are both lower than the sampled erythrosuchid archosauriform Shansisuchus shansisuchus, which fall

within two theoretical overlapping ranges (Figure 2B). As for the South African erythrosuchids, if we

consider Shansisuchus as a terrestrial endotherm-like animal and the low palaeolatitude of this part

of China region, then the two therapsids also fall within the range of endotherms.

Middle to Late Triassic therapsids
The late Anisian cynodont Diademodon and the kannemeyeriiform Kannemeyeria, from the Cynog-

nathus AZ (subzone C), have both lower d18Op values than those of the contemporary semi-aquatic

stereospondyls Paracyclotosaurus and Xenotosuchus with differences ranging from �3.9 ± 2.7‰ to

�0.5 ± 0.6‰ (Figure 3A). This pattern fits within the main range predicting endothermic therapsids.

The Moroccan kannemeyeriiform Moghreberia nmachouensis from the early middle Carnian of

the Argana Basin has a mean d18Op value 2.0 ± 0.5‰ higher than the co-existing aquatic stereo-

spondyl Almasaurus habbazi (Figure 3A), thus implying that Moghreberia nmachouensis was also

endothermic.

An indeterminate cynodont from the Rhaetian Lower Elliot Formation of Lesotho has a d18Op

value 2.1 ± 0.3‰, higher than that of an indeterminate basal sauropodomorph. The suspected endo-

thermy and terrestriality of both dinosaurs (Amiot et al., 2006; D’Emic, 2015) and cynodonts are in

agreement with their d18Op difference that falls within the expected range predicting similar thermo-

physiology between the two (Figure 3B).

Discussion
According to the d18Op value differences observed between therapsids and co-existing non-therap-

sid tetrapods, elevated thermometabolism seems to have been acquired by at least two therapsid

clades: the unnamed dicynodont clade comprising Lystrosauridae + Kannemeyeriiformes, abbrevi-

ated the ‘L+K’ clade, and the Eucynodontia (Figure 4).

Among the interpreted endothermic therapsids, six belong to the L+K clade (Figure 4): Moghre-

beria nmachouensis, Parakannemeyeria youngi, Kannemeyeria simocephalus and Shansiodon wangi

belong to the Kannemeyeriiformes clade, whereas the Lystrosauridae clade comprises Lystrosaurus

and the Chinese indeterminate lystrosaurid. The interpretation of these taxa as endothermic-like ani-

mals is better supported for the African Kannemeyeriiformes, M. nmachouensis and K. simocephalus,

where more individuals were sampled, than for the Chinese species, S. wangi and P. youngi. Con-

cerning the lystrosaurids, Viglietti et al. (2013) demonstrated aggregating behaviour in the Early

Figure 1 continued

oxygen isotope fractionation (Lécuyer et al., 2013) predicts various d18Op value differences. The lighter orange and red areas correspond to the

uncertainty of the temperature gradient. Dap.: Daptocephalus; Tap.: Tapinocephalus.

DOI: 10.7554/eLife.28589.003

Rey et al. eLife 2017;6:e28589. DOI: 10.7554/eLife.28589 6 of 25

Research article Ecology

http://dx.doi.org/10.7554/eLife.28589.003
http://dx.doi.org/10.7554/eLife.28589


Figure 2. d18Op differences between Early to Middle Triassic therapsids and other tetrapods. Differences in d18Op values between therapsids and

stereospondyls (white symbols) and between therapsids and archosauriforms (black symbols) from the same localities are plotted against their

corresponding palaeolatitude. A theoretical framework based on a lower-than-today thermal gradient (0.4 ± 0.1˚C/˚Lat; see Appendix 1) and

Figure 2 continued on next page

Rey et al. eLife 2017;6:e28589. DOI: 10.7554/eLife.28589 7 of 25

Research article Ecology

http://dx.doi.org/10.7554/eLife.28589


Triassic L. declivis and interpreted this as a means to keep warm under extreme climatic conditions.

This is in agreement with our endothermic interpretation for the genus.

Based on the above interpretations, Dicynodon seems to have been ectothermic, a fact which

would suggests the rise of endothermy amongst the dicynodont L+K clade during the latest Permian

(Lopingian). This can be investigated in the future through the isotopic study of a basal dicynodon-

toid such as Daptocephalus from the Lopingian of South Africa (Kammerer et al., 2011;

Viglietti et al., 2016) or Peramodon from the Salarevo Formation of Russia (Sushkin, 1926).

Based on our interpretations, the monophyletic group Eucynodontia (Ruta et al., 2013) (including

Cynognathus, Diademodon, an indeterminate cynodont from Lesotho, and extant mammals) pos-

sessed endothermic-like metabolism. A parsimonious interpretation would imply rooting the origin

of mammal endothermy within non-Eucynodontia Epicynodontia, between the end-Permian and the

earliest Triassic. According to our results, the closest sampled relative of Eucynodontia, the late

Permian basal cynodont (SAM-PK-K05339), was probably ectothermic. Therefore the origin of mam-

mal endothermy could have taken place among ‘intermediate’ groups belonging to the Epicynodon-

tia (such as Cynosaurus from the latest Permian or Thrinaxodon from the Early Triassic of South

Africa) that have in the past been considered to have been endothermic, based on anatomical fea-

tures (Hillenius and Ruben, 2004; Benoit et al., 2015, 2016a).

In agreement with recent phylogenies (Kemp, 2012; Ruta et al., 2013), endothermic-like body

temperature regulations seem to root sometime during the late Permian (Lopingian) independently

within the L+K and Epicynodontia clades, the latter being at the origin of mammal endothermy.

An alternative hypothesis considers that both the L+K and Epicynodontia clades possessed a

homologous endothermy inherited from their direct common ancestors, the basal Neotherapsida

(Figure 4). This suggests that biochemical and physiological mechanisms enabling mammal endo-

thermy, appeared at the base of the neotherapsids during the middle Permian, which is a conclusion

recently published based on the paleohistology of some dicynodonts (Olivier et al., 2017). In our

case, the absence of an endothermic signal in the sampled Permian therapsids could be due to an

endothermy being only seasonal, linked to the presence of a cold season or to the reproduction

period (as observed today in some reptile species; Tattersall et al., 2016), which would not be visi-

ble in a bulk signal. Therefore, effective acquisition of mammal ‘true endothermy’ was expressed

independently within these two lineages, possibly as a result of extrinsic factors.

Global and regional palaeoclimate reconstructions show a cooling trend toward the end-Permian,

followed by an abrupt and intense warming at the Permian-Triassic Boundary (Chen et al., 2013;

Rey et al., 2016). Interestingly, most of the therapsid clades which survived the end-Permian mass

extinction were supposedly endothermic. It thus appears that climatic fluctuations may have acted

as selective pressures which favoured or ‘activated’ elevated thermometabolic capabilities within

therapsids, at the origins of mammal endothermy. A possible explanation could be the acquisition of

a fast growth rate due to the high metabolic rate of the endothermy. According to a recent palaeo-

histology study (Botha-Brink et al., 2016), Early Triassic therapsids, such as Lystrosaurus or even

therocephalians and cynodonts, had a high growth rate allowing them to reach reproductive matu-

rity within a few seasons and compensate their shortened life expectancies. This adaptation might

have enabled certain therapsids to survive the intense climatic change of that time and conquer the

newly vacant niches.

Concluding remarks
In order to investigate the origin of mammal endothermy amongst the Permo-Triassic therapsids,

stable oxygen isotope compositions of apatite phosphate and carbonate from therapsids and associ-

ated taxa recovered from several palaeolatitudes were analysed. The following results are

highlighted:

Figure 2 continued

phosphate-water-temperature oxygen isotope fractionation (Lécuyer et al., 2013) predicts various d18Op value differences. The lighter orange and red

areas correspond to the uncertainty of the temperature gradient.

DOI: 10.7554/eLife.28589.004
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Figure 3. d18Op differences between Middle to latest Triassic therapsids and other tetrapods. Differences in d18Op values between therapsids and

stereospondyls (white symbols) and between therapsids and archosauriforms (black symbols) from the same localities are plotted against their

corresponding palaeolatitude. A theoretical framework based on a lower-than-today thermal gradient (0.5 ± 0.1˚C/˚Lat; see Appendix 1) and

Figure 3 continued on next page
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. Assuming that analysed samples have preserved their original isotope composition of phos-
phate, all the Permian therapsids analysed appear to have ectotherm-like thermoregulation
and representatives of two Triassic therapsid clades are considered to have had endotherm-
like thermoregulation: the Lystrosauridae + Kannemeyeriiformes and the Eucynodontia.

. It is proposed that constant elevated thermometabolism appeared independently, at least
twice during therapsid evolution. Following the principles of parsimony and phylogenetic sys-
tematics, both evolutionary events occured during the late Permian.

. It seems that the timing of the acquisition of elevated thermometabolism among amniotes
coincides with major global climatic and environmental fluctuations at the Permo-Triassic
boundary and may had a selective advantage to survive the extinction event and result ulti-
mately in mammalian endothermy.

Material and methods

Sample collection
Nineteen new fossil apatite samples were analysed to determine stable oxygen isotope composi-

tions of apatite phosphate and carbonate, along with 89 samples for which oxygen isotope composi-

tions have already been published (Rey et al., 2016; Supplementary file 1). This sample total

comprises 41 teeth and 65 bones of 90 individual tetrapods (Therapsida, Archosauriformes, Pararep-

tilia and Stereospondyli) recovered from Permian and Triassic deposits of South Africa, Lesotho,

Morocco and China. All the sample localities are correlated to the marine biostratigraphic stages

using the absolute ages accepted by the International Commission on Stratigraphy (Cohen et al.,

2013); updated 12/2016), with the Permo-Triassic and Guadalupian-Lopingian boundaries now

respectively considered to be at 251.90 ± 0.02 Ma (Burgess et al., 2014) and 259.1 ± 0.5

(Zhong et al., 2014) Ma.

South African samples comprise Permian and Triassic bones and teeth of therapsids, pareiasaurs,

archosauriforms and stereospondyls recovered from 10 localities in the Beaufort Group (Karoo

Supergroup), and housed in the collections of the Iziko South African Museum, Cape Town (SAM,

Supplementary file 1) and at the Evolutionary Studies Institute, University of the Witwatersrand,

Johannesburg (ESI, Supplementary file 1). Permian biozone ages of South African localities were

taken from (Rubidge et al., 2013; Day et al., 2015), whereas Triassic age determination has been

achieved by biostratigraphic correlation with Laurasian sequences (Hancox et al., 1995;

Rubidge, 2005; Abdala and Ribeiro, 2010).

Lesotho samples comprise a cynodont therapsid and a basal sauropodomorph dinosaur from a

Triassic locality near the town of Pokane, and are part of the Paul Ellenberger Collection at the Insti-

tut des Sciences de l’Evolution, University Montpellier, France (ISEM, Supplementary file 1). The

locality belongs to the ‘Red Beds inférieurs a or b’ of the lower Elliot Formation which is currently

regarded as latest Triassic (late Rhaetian) (Knoll, 2004).

Moroccan samples comprise therapsid and stereospondyl bones recovered from the ‘Locality 11’

of the Argana Group (Jalil, 1999) near the village of Alma, and housed at the Museum National

d’Histoire Naturelle, Paris, France (MNHN, Supplementary file 1). The locality is biostratigraphically

correlated to the upper Timezgadiouine Formation, considered to be Middle to early Late Carnian

(Jalil, 1999).

Chinese samples are from Permian and Triassic localities situated in Gansu, Shanxi and Xinjiang

provinces and comprise therapsids found in association with archosauriforms or parareptiles. These

remains are curated at the Institute of Vertebrate Paleontology and Paleoanthropology in Beijing,

China (IVPP, Supplementary file 1). The Dashankou locality, from Gansu Province, is biostratigraphi-

cally dated as Early Roadian (Liu et al., 2009; Liu, 2010). From Shanxi Province, sampled fossils orig-

inate from three localities in the Ermaying Formation which is considered to be Anisian (Liu et al.,

Figure 3 continued

phosphate-water-temperature oxygen isotope fractionation (Lécuyer et al., 2013) predicts various d18Op value differences. The lighter orange and red

areas correspond to the uncertainty of the temperature gradient.
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Figure 4. Phylogeny of sampled therapsids. Phylogeny of the sampled therapsids plotted alongside a stratigraphic scale, based on proposed therapsid

phylogenies (Ruben and Jones, 2000; Hillenius and Ruben, 2004; Gebauer, 2007; Cisneros et al., 2012; Liu, 2013; Ruta et al., 2013) and their

biostratigraphic ranges (Kammerer et al., 2011; Kemp, 2012; Ruta et al., 2013; Huttenlocker, 2014; Day et al., 2015; Viglietti et al., 2016). The

thickest parts of the bold lines represent the age range uncertainty of the localities where the samples come from. Species identified as endotherm-like

Figure 4 continued on next page
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2013). From Xinjiang Province, two localities in the Jiucaiyuan Formation have been sampled and

are considered Early Triassic (Metcalfe et al., 2009).

Calculation of palaeogeographic coordinates of the sampling sites was performed after careful

selection of the magnetic poles of West Gondwana (Muttoni et al., 2001), North China ( et al.,

1992), South Jungar (Choulet et al., 2013) and the Alashan terrane (Meng, 1992; Yuan and Yang,

2015). The Apparent Polar Wander Path (APWP) of South Africa (Torsvik et al., 2012) was used to

Figure 4 continued

are written in bold and red. Node numbers refer to clades quoted in the text: 1: Neotherapsida; 2: Dicynodontoidea; 3: Lystrosauridae; 4:

Kannemeyeriiformes; 5: Epicynodontia; 6: Eucynodontia.

DOI: 10.7554/eLife.28589.006

Figure 5. Isotopic preservation assessment. d18Oc-d
18Op differences between teeth and bones plotted against the

structural carbonate content (wt%) of apatite. Samples that have d18Oc-d
18Op differences higher than 14.7‰ are

considered doubtful as regards potential diagenetic alteration (see text). For carbonate contents (wt%) higher than

13.4%, the d18Oc values are considered to be inherited from inorganic diagenetic processes. A high difference

between d18Oc and d18Op is interpreted as the result of a microbially-mediated alteration of the apatite phosphate

or too high d18Oc values resulting from the addition of inorganic carbonate or isotopic exchange with an external

source of inorganic carbon. The grey crosses refer to previously published South African bone and tooth samples

(Rey et al., 2016).
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constrain the palaeolatitudinal position of the South African and Lesotho fossil sites. Palaeolatitudes

and associated uncertainties (A95) are shown in Supplementary file 1.

Analytical techniques
To measure the oxygen isotope composition of the apatite phosphate group, the phosphate ions

were isolated using acid dissolution and anion-exchange resin applying a standard protocol

(Lécuyer, 2004). Silver phosphate was quantitatively precipitated in a thermostatic bath set at a

temperature of 70˚C. After filtration, washing with double deionized water and drying at 50˚C, an ali-

quot of 300 mg of Ag3PO4 was mixed with 300 mg of nickelised carbon in a silver reaction capsule.

Silver phosphate was then reduced into CO to measure its 18O/16O ratio (Lécuyer et al., 2007;

Fourel et al., 2011). Each sample was heated at 1450˚C by pyrolysis using a VarioPYROcube EA sys-

tem (Elementar) interfaced to an IsoPrime isotope ratio mass spectrometer working in continuous

flow mode at the UMR CNRS 5276 LGLTPE, University Claude Bernard Lyon 1.

Isotopic compositions are quoted in the standard d notation relative to V-SMOW. Silver phos-

phate precipitated from standard NBS120c (natural Miocene phosphorite from Florida) was repeat-

edly analysed (d18O = 21.71 ± 0.20‰; n = 30) along with the silver phosphate samples derived from

the tetrapod remains. For the oxygen isotope analysis of apatite carbonate, about 10 mg of tooth or

bone powder was pre-treated (Koch et al., 1997). Powders were washed with a 2% NaOCl solution

to remove organic matter, then rinsed five times with double deionized water and air-dried at 40˚C
for 24 hr. Potential secondary carbonate was removed by adding 0.1 M acetic acid and leaving for

24 hr, after which the powder was again rinsed five times with double deionized water and air-dried

at 40˚C for 24 hr. The powder/solution ratio was kept constant at 0.04 g mL�1 for both treatments.

Stable isotope ratios were determined by using a Thermo Finnigan Gasbench II at the geochemistry

laboratory of the Institute of Geology and Geophysics (Chinese Academy of Sciences, China). For

each sample, an aliquot of 2 mg of pre-treated apatite was reacted with 5 drops of supersaturated

orthophosphoric acid at 72˚C for one hour under a He atmosphere before starting 10 measurement

cycles of the isotopic composition of the CO2 produced with a Finnigan MAT 253 continuous flow

isotope ratio mass spectrometer. The measured oxygen isotopic compositions were normalized rela-

tive to the NBS-19 calcite standard and have a reproducibility index better than ±0.2‰. Isotopic

compositions are quoted in the standard d notation relative to V-SMOW.

Robustness of the stable isotope record
Analysed materials consist of bone or tooth dentine, which is more porous than enamel with small

and less densely inter-grown apatite crystals (Mills, 1967). Thus, their original stable isotope compo-

sitions are more prone to diagenetic alteration that may have taken place through precipitation of

secondary minerals within and at the surface of bioapatite crystals, adsorption of ions on the surface

of apatite crystals, or dissolution and recrystallization with isotopic exchange. The samples from

South Africa have been previously tested for primary preservation through comparison between

their d18Op values, d18Oc values and carbonate content on the basis of the following considerations:

(1) the carbonate content in apatite of modern vertebrates typically ranges from less than 1% up to

13.4%. Thus, samples that have a carbonate content exceeding 13.4 wt% likely contain additional

inorganic carbonate precipitated from diagenetic fluids, and would result in potentially biased d18Oc

values of apatite carbonate (Figure 5); (2) In modern vertebrates, the oxygen isotope composition of

apatite carbonate is higher than that of co-occurring apatite phosphate (7–9 ‰ in mammals), and up

to 14.7‰ in sharks (Vennemann et al., 2001). Experimental ( et al., 1967) and empirical studies

(Zazzo et al., 2004b) have shown that microbially-mediated diagenetic alteration of apatite phos-

phate results in a greater difference between d18Oc and d18Op values. Therefore, fossil samples

exhibiting d18Oc-d
18Op differences larger than 14.7‰ are most likely altered and can be disregarded

(Figure 5). Inorganic alteration at low temperature has little effect on the d18Op values of phos-

phates, even at geological time scales (Lecuyer et al., 1999), so samples affected by inorganic dia-

genetic alteration of carbonates, (resulting either in a high overall carbonate content or anomalous

d18Oc-d
18Op differences), may still preserve the original oxygen isotope composition of their phos-

phate (Figure 5). Using these two assessments, newly measured d18Op values are considered to

have preserved their original isotopic signatures and can be interpreted in terms of ecologies and

physiologies.
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Assessment of therapsid thermophysiology
For all localities, average d18Op values were calculated for each tetrapod species. Differences in

d18Op values between therapsid species and co-occurring non-therapsid tetrapods (amphibians, par-

areptiles or archosauriforms) were calculated and plotted against their corresponding palaeolatitude

for three time intervals: the middle to late Permian (Figure 2), the Early to Middle Triassic (Figure 3)

and the Middle Triassic to latest Triassic (Figure 4). These differences were compared to the follow-

ing four theoretical areas of values represented as coloured areas in Figures 1–3. To construct those

theoretical areas, both the phosphate-water temperature scale from Lécuyer et al., 2013 and the

differences of stable oxygen compositions between mammals of various ecologies from

Cerling et al. (2008) have been used. (see Appendix 1 for their construction details).

Orange and green areas in Figures 1A, 2A and 3A represent expected d18Op value differences

between terrestrial therapsids and semi-aquatic stereospondyls (white symbols) or parareptiles

(black symbols); red and blue areas in Figures 1B, 2B and 3B represent expected d18Op value differ-

ences between terrestrial therapsids and terrestrial Permian parareptiles or Triassic archosauriforms

(black symbols). Oblique orange and red areas in Figures 1–3 represent expected d18Op value dif-

ferences between an endotherm and an ectotherm. Vertical green and blue areas in Figures 1–3 rep-

resent expected d18Op value differences between animals having similar thermophysiology.
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Appendix 1

Theoretical curves construction
In order to infer therapsid thermophysiologies based on the d18Op differences between

therapsids and the associated fauna, the following theoretical framework is proposed and

represented in Figures 1, 2 and 3 as colored areas. These areas are based on the two main

factors influencing animal d18Op values: their thermometabolism (here simplified as

ectotherm and endotherm) and their lifestyle (here terrestrial and semi-aquatic).

The d18Op value ranges are estimated based on the phosphate-water temperature scale

(Lécuyer et al., 2013):

Tb ¼ 117:4� 4:5ðd18Ob� d
18ObwÞ (1)

Where Tb corresponds to body temperature, d18Op correspond to the oxygen isotope

composition of apatite phosphate, and d18Obw correspond to the oxygen isotope

composition of body fluids. For endothermic vertebrates, Tb is assumed to be at 37˚C, the
average Tb of most extant placentals and possibly of the common ancestor of all extant

mammals (Watson and Graves, 2013). For ectothermic vertebrates, Tb is assumed here to

reflect immediate environmental temperature (Te). According to Equation 1, the d18Op

difference between an endotherm and an ectotherm can be expressed as:

d
18Op�endotherm � d

18Op�ectotherm ¼ ðTe � 37Þ=4:5þðd18Obw�endotherm � d
18Obw�ectothermÞ

Because vertebrate d18Obw value depend on their ecology that affects the input-output

balance of body water (Luz et al., 1984; Bryant and Froelich, 1995; Kohn, 1996a), the

difference d
18Obw�endotherm � d

18Obw�ectotherm will mainly reflects that of their lifestyle (terrestrial,

semi aquatic or aquatic), as well as their dependency on the surface water they ingest.

Cerling et al., 2008, the d
18Op difference between water-dependent and water-

independent terrestrial mammals can be up to 4‰. This is illustrated by the ranges 1 and 3

in Appendix 1— Figure 1 and by the red and blue ranges in the main text Figures 1A,

2A and 3A).
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Appendix 1—figure 1. Expected latitudinal variation of the d18Op difference between verte-

brate taxa of various physiologies and ecologies. Based on modern relationships between

climate and phosphate-water-temperature oxygen isotope fractionation (Lécuyer et al.,

2013) the following d18Op values differences are predicted: (1) corresponds to a terrestrial

endotherm compared to a terrestrial ectotherm; (2) corresponds to a terrestrial endotherm

compared to a semi-aquatic ectotherm; The vertical range (3) corresponds to terrestrial

animals having similar thermometabolism; (4) corresponds to the difference between a

terrestrial and a semi-aquatic animals having a similar thermometabolism.

DOI: 10.7554/eLife.28589.009

This variation in d18Op values can be overprinted by the animal lifestyle, a semi aquatic

animal having d18Op value 3‰ lower than that of co-existing water-dependent terrestrial

species, and 7‰ lower than that of co-existing water-independent terrestrial one

(Appendix 1—figure 1, ranges 2 and 4, and main text Figures 1B, 2B and 3B, ranges

orange and green).

The environmental temperature (Te) used to approximate ectotherm body temperature (Tb)

is estimated based on the present-day relationship between mean air temperature and

latitude. Because this latitude-temperature relationship is not valid for low latitudes below

about 10˚ (corresponding to the thermal equators of present-day Earth), we assume a

constant temperature between 0˚ and 10˚ of latitude.

As a simplification, three periods are considered:
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1. The Middle to Late Permian with equatorial sea surface temperatures close to the modern
ones (Chen et al., 2013) (~25˚C) for which we assume a present-day thermal gradient of 0.6

˚C/˚Latitude (Amiot et al., 2004; Williams et al., 2007) (Main text Figure 1).
2. The Early to Middle Triassic having globally warmer temperatures and a flatter temperature

gradient. Based on (Trotter et al., 2015), mean equatorial sea surface temperatures were
about 10˚C higher than Late Permian ones (Trotter et al., 2015) (~35˚C). For this time
period, we assume a flatter thermal gradient that we arbitrarily set at 0.4 ˚C/˚Latitude (Main
text Figure 2).

3. The Middle Triassic to Early Jurassic having globally intermediates temperatures
(Trotter et al., 2015) that we set to 30˚C with an intermediate gradient of 0.5 ˚C/˚Latitude
(Main text Figure 3).

In order to take into account the possible variations of the thermal gradient within the

selected periods, an interval of ±0.1 ˚C/˚L is added for each Main text figures.

Consequently, latitudinal thermal gradients will lead to d18Op-endotherm - d18Op-ectotherm

differences varying along with latitude (Appendix 1—figure 1, ranges 1 and 2). This

simplified framework is used in this study to predict the following scenarios based on d18Op

differences between therapsids and co-existing other tetrapods (Appendix 1—figure 1):

Endothermic and terrestrial therapsid vs ectothermic and terrestrial tetrapod (range 1);

Endothermic and terrestrial therapsid vs ectothermic and semi-aquatic tetrapod (range 2);

Therapsids and other tetrapods having similar thermophysiologies and lifestyle (range 3);

Terrestrial therapsid and semi-aquatic tetrapods having similar thermophysiologies (range 4).

Ecology of sampled tetrapods and its impact on stable
oxygen isotope compositions
Prior to interpreting differences between therapsid and associated non-therapsid tetrapod

d18Op values in terms of differences in thermophysiologies, ecological traits must be

considered as they also affect the oxygen isotope compositions of apatite phosphate.

Indeed, d18Op values recorded in phosphatic tissues depend on the animal body

temperature, as well as on the oxygen isotope composition of body water, the latter being

affected by water turnover rate and isotopic fractionations associated with water loss

(Bryant and Froelich, 1995). Indeed, water loss through transcutaneous evaporation, sweat

and exhaled water vapour tends to 18O-enrich the remaining body water (Kohn, 1996a).

This isotopic enrichment is amplified or mitigated depending on the rate of water turnover,

which depends itself on the animal ecology. Aquatic and semi-aquatic animals regularly

ingest and release large amounts of their environmental water compared to terrestrial ones,

which in turn reduces the magnitude of body water 18O-enrichment relative to that of

environmental water (Kohn, 1996a).

Stereospondyl amphibians
The sampled stereospondyl amphibian clade (Almasaurus habbazi, Lydekkerina, Microposaurus,

Paracyclotosaurus, Rhinesuchus and Xenotosuchus) includes semi-aquatic to aquatic animals

(Schoch, 2008). A study dedicated to Rhinesuchus palaeohistology concluded that it had a

fully aquatic lifestyle (McHugh, 2014), whereas Lydekkerina, a basal stereospondyl, was

amphibious with a tendency to be terrestrial (Canoville and Chinsamy, 2015).

Pareiasaurid and bolosaurid parareptiles
The sampled parareptiles include the Chinese Bolosauridae, Belebey chengi, and the South

African Pareiasauria, Pareiasaurus and basal pareiasaurs (Embrithosaurus, Nochelosaurus or
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Bradysaurus; (Lee, 1997). The Chinese taxon is considered to have been terrestrial

(Berman et al., 2000; Müller et al., 2008), but interpretations of the life habits and habitats

of the South Africa pareiasaurs still lack a consensus. According to authors, they are

variously considered fully aquatic (Ivakhnenko, 2001), semi-aquatic (Kriloff et al., 2008) or

fully terrestrial (Voigt et al., 2010; Canoville et al., 2014). The low d18Op values measured

in both Pareiasaurus and Rhinesuchus are similar to each other, Pareiasaurus having slightly

higher d18Op values than Rhinesuchus (~1‰), but significantly lower than those measured in

therapsids (about 4‰ to 8‰). Considering Rhinesuchus as an aquatic ectothermic amphibian

(McHugh, 2014), it is suggested that the ectothermic Pareiasaurus was also aquatic or semi-

aquatic as previously suggested (Ivakhnenko, 2001; Kriloff et al., 2008). In contrast to the

semi-aquatic Pareiasaurus from the Lower Daptocephalus AZ, the Tapinocephalus AZ

pareiasaurs may have been terrestrial as recently proposed in a study on pareiasaur ecology

and based on oxygen and carbon isotope compositions of apatite carbonate

(Canoville et al., 2014). Moreover, those authors found no significant differences between

therocephalians and pareiasaurs, agreeing with our dataset, and a ~ 3‰ overlap between

pareiasaur and dinocephalian d18Oc values, even though most dinocephalian values are

several per mil lower than those of pareiasaurs.

Archosauriforms
Archosauriformes are represented by the Erythrosuchidae Erythrosuchus and Shansisuchus

shansisuchus, by the Proterosuchidae ‘Chasmatosaurus’ yuani, as well as by an indeterminate

basal sauropodomorph dinosaur. Proterosuchid lifestyle is still unresolved, but Botha-

Brink and Smith, 2011 favoured a terrestrial rather than an aquatic lifestyle, whereas the

erythrosuchids are considered as the largest terrestrial predators of their time (Botha-

Brink and Smith, 2011).

Lystrosaurid therapsids
Therapsids are generally considered as terrestrial dwellers (Kemp, 2012) with a few

uncertainties such as Anteosaurus considered as riparian (Boonstra, 1955, Boonstra, 1962)

and Lystrosaurus considered by some as semi-aquatic (Germain and Laurin, 2005;

Ray et al., 2005; Botha-Brink and Angielczyk, 2010; Canoville and Laurin, 2010).

Because the Lystrosaurus-Lydekkerina d18Op difference falls within the same range as the

Kannemeyeria-Xenotosuchus and Kannemeyeria-Microposaurus values from the

Cynognathus subzone B assemblage, Lystrosaurus could be considered as having the same

thermophysiology and lifestyle as Kannemeyeria, i.e. a terrestrial endotherm (Figure 2A).

Because Lystrosaurus may have either been terrestrial (Botha and Smith, 2006) or semi-

aquatic (Canoville and Laurin, 2010), it cannot be totally excluded that Lystrosaurus shared

a similar lifestyle and thermometabolism with the amphibian Lydekkerina. If Lystrosaurus was

indeed semi aquatic, then it could also be predicted to have been an ectotherm.

Given that the thermophysiology of the terrestrial archosauriform ‘Chasmatosaurus’ remains

unclear, the two similar d18Op values observed in the lower Triassic Jiucaiyuan Fm. of

Xinjiang province of China may indicate either that both the lystrosaurid and the

proterosuchid shared similar thermometabolism and lifestyle (terrestrial endotherms or

terrestrial ectotherms; Figure 2), or that one of them may have had a lower body

temperature. Indeed, compared to low latitudes where ectotherms have slightly lower d18Op

values than co-existing endotherms due to differences in metabolic activity and body

temperatures, mid latitude ectotherms have even lower body temperatures (reflecting the

environmental thermal gradient) resulting in higher d18Op values that mimic those of co-

existing endotherms (Amiot et al., 2004). It is worth noting that based on histological

features, Proterosuchus, had intermediate growth rates, suggesting an intermediate
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thermometabolism (Botha-Brink and Smith, 2011) that could apply to the Chinese

‘Chasmatosaurus’. Considering a terrestrial lifestyle for the Chinese lystrosaurids (see

above), and the conflicting hypotheses of Lystrosaurus from South Africa (terrestrial

endotherm vs. semi-aquatic ectotherm), the hypothesis for terrestrial endothermy for the

lystrosaurids is favoured.
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